Chebyshev pseudospectral-hybrid finite element method for two-dimensional vorticity equation
نویسندگان
چکیده
منابع مشابه
An Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements
In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...
متن کاملA Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کاملChebyshev-Legendre Spectral Domain Decomposition Method for Two-Dimensional Vorticity Equations
We extend the Chebyshev-Legendre spectral method to multi-domain case for solving the two-dimensional vorticity equations. The schemes are formulated in Legendre-Galerkinmethod while the nonlinear term is collocated at Chebyshev-Gauss collocation points. We introduce proper basis functions in order that the matrix of algebraic system is sparse. The algorithm can be implemented efficiently and i...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملFinite Element Method for a Kind of Two-Dimensional Space-Fractional Diffusion Equation with Its Implementation
In this article, we consider a two-dimensional symmetric space-fractional diffusion equation in which the space fractional derivatives are defined in Riesz potential sense. The well-posed feature is guaranteed by energy inequality. To solve the diffusion equation, a fully discrete form is established by employing Crank-Nicolson technique in time and Galerkin finite element method in space. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis
سال: 1996
ISSN: 0764-583X,1290-3841
DOI: 10.1051/m2an/1996300708731